Nanoscale Magnetism at The University of Alabama #### David E. Nikles Professor of Chemistry and Materials Science Associate Director, Center for Materials for Information Technology The University of Alabama, Tuscaloosa, Alabama 35487-0209 Telephone: 205-348-9267 E-mail: dnikles@mint.ua.edu # The University of Alabama Proposes to be the Nanomagnetism Southeast Node on the National Nanotechnology Infrastructure Network The Center for Materials for Information Technology at the University of Alabama has - a NSF MRSEC in Materials for Magnetic Data Storage and Molecular Recording - a broad suite of magnetic characterization equipment - multi-scale computational modeling of magnetic nanostructures - graduate education in a multidisciplinary team environment - outreach to HBCU faculty - technology transfer to industry # **Center for Materials for Information Technology** A NSF Materials Research Science and Engineering Center Basic research in the materials science underpinning future data storage devices Two IRG's #### IRG-1 Magnetic Storage Materials science for heads and media for future magnetic data storage devices with capacities beyond 1 terabit per square inch #### IRG-2 Molecular Storage Materials science in probe-based storage in self-assembled films consisting of redox gradient dendrimers with potential data storage densities beyond 100 terabits per square inch # Faculty in the Center for Materials for Information Technology Twenty-two faculty from six departments in two different colleges Includes two fellows of the American Physical Society, one Fellow of the American Ceramics Society, two IEEE Fellows, one IEEE Magnetics Society Achievement award winner and two NSF CAREER grantees. Chester Alexander, Jr., Physics, Magnetization Dynamics: Martin Bakker, Chemistry, Self-assembly and Templating of Magnetic Nanostructures; Silas Blackstock, Chemistry, Molecular Data Storage Materials; William H. Butler, Physics, Theory of Magnetism and Magnetotransport William D. Doyle, Physics, Magnetic Materials and Devices; Hideo Fujiwara,, Physics (Adjunct), Magnetic Thin Films; GMR/Spin Valves; J.W. Harrell, Jr., Physics, Magnetic Media Characterization: Duane Johnson, Chemical Engineering, Fluid Dynamics; Lowell D. Kispert, Chemistry, EPR and ENDOR Spectroscopy; Tonya M. Klein, Chemical Engineering, Chemical Vapor Deposition; Gary Mankey, Physics, Ferro and Anti-Ferromagnetic Interfaces: Robert M. Metzger, Chemistry, Molecular Electronics; David E. Nikles, Chemistry, Magnetic and Optical Media Chemistry; R. Kumar Pandey, Electrical Engineering, Application of Magnetic Oxide Materials Rainer Schad, Physics, Magnetic Films and Interfaces; Spin Tunneling Structures; Min Sun, Applied Mathematics, Modeling, Analysis and Optimal Control of Physical Systems; Shane Street, Chemistry, Surface Science and Tribo-Chemistry; Greg Szulczewski, Chemistry, Molecular Data Storage; Pieter Visscher, Physics, Computer Simulation of Particulate Systems; Garry W. Warren, Metallurgical & Materials Engineering Corrosion, Electrochemistry, Metal-Polymer Interfaces; Mark Weaver, Metallurgical & Materials Engineering Tribology, Microstructural Characterization; John Wiest, Chemical Engineering., Non-Newtonian Fluid Mechanics and Tape Coating Processes #### THE UNIVERISTY OF ALABAMA # **Center Budget** ### Center Funding for 2002 - 2003 Total \$3.9M **Major Funding Sources** **NSF MRSEC** **Individual Investigator Awards** **Corporate Sponsors** #### **Shared User Facilities** Our Center is located on three floors on the Bevill Building The faculty share the space and facilities There are two clean rooms Professional staff (Ph. D. level) manages the facilities Students are trained on the use of equipment and are then allowed hand-on access for their dissertation research THE UNIVERISTY OF ALABAMA Center for Materials for Information Technology A NSF Materials Research Science and Engineering Center ## **Magnetic Characterization Capabilities** #### Magnetometry - Digital Measurements Vibrating Sample/Torque Magnetometer (15 kOe, 100 K – 600 K) - Oxford MagLab VSM (0 9 T, 1.5 K 1000 K) - Alternating gradient magnetometer (0 20 kOe, 10 K 600 K) - Magneto-optical Kerr effect (MOKE) #### Magnetotransport • We have 2-probe and 4-probe magnetotransport measurement setups. Temperature 7 to 350 K and magnetic fields up to 2 T - The new Oxford VSM will be equipped with a transport sample holder which will allow measurements in the temperature range 1.5 K to 900 K in magnetic fields up to 9 T. - AC and DC transport measurements over a wide rage of impedances. A specialized setup is currently under construction to allow noise power measurements in the frequency range 10mHz to 10kHz in a shielded environment with fields up to 100 Oe and temperatures from 200 K to 350 K. #### **Probe Microscopy** Digital Instruments AFM/MFM ## **Magnetic Characterization Capabilities** #### **High-Frequency Permeability Measurements** - Measurements can be made on films at frequencies up to 6 GHz - Data can be used to determine the damping constant, , and the resonance frequency, f, of the film as a function of applied magnetic field #### FMR Spectroscopy The facilities for EPR/FMR are unsurpassed in this country, with four frequencies available; ``` 9 GHz (X-band, 0.3 T), 15 GHz, 24 GHz(K-band, 0.9 T), 33 GHz (Q-band, 1.2 T) 95 GHz (W-band, 3 T) ``` - Characterize the anisotropy - Calculate values of the damping constant from the line-width #### **High-Speed Pulse Magnetometry** - Subject a magnetic sample to nanosecond magnetic field pulses - Measure magnetic remanence # **Multi-scale Magnetic Modeling** #### **Atomic Scale** - First principles based modeling of electronic and magnetic structure using state of the art electronic structure codes. - First-principles based calculations of transport using a suite of codes that can treat electron transport at several levels of approximations from fully quantum-mechanical through semi-classical. #### Mesoscale - UA group has developed general and efficient codes for micromagnetic simulation (soft films, hard perpendicular media, MRAM elements, current-driven switching, self-assembled arrays) - Animated visualization capability is built in; group has developed several innovative visualization methods #### Bridging the scales Research within our MRSEC is directed at marrying the atomic scale and mesoscale codes #### **Atom Probe** #### Characterization of Multilayers at the Atomic Scale using Atom Probe Field Ion Microscopy - Determine the atomic scale structure of multilayers - Developing this technique for characterizing magnetic samples with nanoscale dimensions - Collaboration between the University of Alabama (Mark Weaver) and Oak Ridge National Laboratory Schematic illustration of the 3DAP approach for atomic scale characterization [X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens and T. F. Kelly, "Atomic scale structure of sputtered metal multilayers," Acta Materialia 49 (2001) 4005-4015]. #### **Education** #### Graduate Education in a Multidisciplinary Team Environment Pursue Ph. D.'s in Chemistry, Physics, Chemical Engineering, Metallurgical and Materials Engineering or Materials Science Students pursue their dissertation research in multidisciplinary teams The research activities are scrutinized and planned during biweekly team meetings Consensus management with every member of the team contributing to project planning — ownership and responsibility to the project goals Students must commit themselves to complete their research tasks in a timely manner so that other team members can complete their own tasks More than half of our M. S. and Ph. D. graduates and former post docs have found rewarding employment in the high tech information storage industry David Arrington (chemistry doctoral candidate) presents his research results at a multidisciplinary team meeting #### THE UNIVERISTY OF ALABAMA Center for Materials for Information Technology ## Research Experiences for Undergraduates Provide a summer research experience in materials science for undergraduate science and engineering majors Outreach to women and minorities Interest undergraduate science and engineering majors in careers in information technology "The Extreme Sport of Physics" M. Kryder Collaborative & Interdisciplinary Research Jonathan Brauer (2000 REU) participates in group research meeting with Profs. Szulczewski and Blackstock and graduate students K. Kim and Trent Selby Hands-on experience with state of the art equipment Jakeithia Prejean (1999 REU) measures resistivities of sputtered thin films. # **Outreach to HBCU Faculty** NSF-sponsored three-week summer workshop "Introducing Science Faculty from Historically Black Colleges and Universities to Materials Science and Engineering" Administered by Professors Viola Acoff and Mark Weaver MRSEC faculty assist by giving lectures and providing laboratory demonstrations Web page: http://bama.ua.edu/~ua-mse/content.html **2001 HCU Workshop Participants** # Research Experiences for HBCU Faculty #### **Objectives** To develop long-term research collaborations between the MRSEC and faculty at HBCUs Provide opportunities for minority students to participate in materials science research #### Approach Each summer two HBCU faculty (from the workshop) are selected to spend the remainder of the summer doing research with a MRSEC team. If the faculty can also bring a student, that student will participate in our REU program Establish on-going research collaborations beyond the summer # **Research Experiences for HBCU Faculty** #### Summer 2002 Professor Justin Akujieze (Chicago State University, 2nd from right) and Kara Scott (also from Chicago State U., middle) conduct research in our clean room with Gary Mankey (3rd from right) and his group #### THE UNIVERISTY OF ALABAMA # **Outreach to Industry** Transfer of knowledge to the information storage industry Education of scientists and engineers Publications and presentations Interaction with the corporate sponsors of MINT Participation in the International Storage Industry Consortium (INSIC) Workshops # **Reviews for our Corporate Sponsors** Visit to Seagate's Pittsburgh Technology Center 6/21/02 #### THE UNIVERISTY OF ALABAMA # The University of Alabama and the National Nanotechnology Infrastructure Network ## Nanomagnetism Southeast Broad suite of magnetic characterization tools Computational tools for magnetism Graduate education in a multidisciplinary team environment Outreach to HBCU faculty Technology transfer to industry Contact: David E. Nikles dnikles@mint.ua.edu